卷积神经网络

卷积运算

卷积神经网络主要是靠卷积和池化两个操作,卷积核(滤波器)通常为较小尺寸的矩阵。图像卷积运算与相关运算的关系如下图所示(图片来自链接),其中F为滤波器,X为图像,O为结果。

在二维图像上,使用Sobel Gx滤波器进行卷积如下图所示

当输入为多维图像(或者多通道特征图)时,多通道卷积如下图所示(图片来自链接),图中输入图像尺寸为6×6,通道数为3,卷积核有2个,每个尺寸为3×3,通道数为3(与输入图像通道数一致),卷积时,仍是以滑动窗口的形式,从左至右,从上至下,3个通道的对应位置相乘求和,输出结果为2张4×4的特征图。一般地,当输入为m×n×c时,每个卷积核为k×k×c,即每个卷积核的通道数应与输入的通道数相同(因为多通道需同时卷积),输出的特征图数量与卷积核数量一致

池化运算

池化的英文是pooling,还有一种叫法是down sampling(下采样),池化就是将特征矩阵划分为若干小块,从每个子矩阵中选取一个值替代该子矩阵,这样做的目的是压缩特征矩阵,简化接下来的计算。池化有两种方式:Max Pooling(最大值池化)和Average Pooling(平均值池化),前者是从子矩阵中取最大值,后者是取平均值。

1558690372259

Text-CNN

论文:https://arxiv.org/abs/1408.5882

网络结构:

1558690428889

1558690454916

TextCNN详细过程:

  • Embedding:第一层是图中最左边的7乘5的句子矩阵,每行是词向量,维度=5,这个可以类比为图像中的原始像素点。
  • Convolution:然后经过 kernel_sizes=(2,3,4) 的一维卷积层,每个kernel_size 有两个输出 channel。
  • MaxPolling:第三层是一个1-max pooling层,这样不同长度句子经过pooling层之后都能变成定长的表示。
  • FullConnection and Softmax:最后接一层全连接的 softmax 层,输出每个类别的概率。

一维卷积(conv-1d):

  • 图像是二维数据;
  • 文本是一维数据,因此在TextCNN卷积用的是一维卷积(在word-level上是一维卷积;虽然文本经过词向量表达后是二维数据,但是在embedding-level上的二维卷积没有意义)。一维卷积带来的问题是需要通过设计不同 kernel_size 的 filter 获取不同宽度的视野

实现:

基于keras的实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import logging

from keras import Input
from keras.layers import Conv1D, MaxPool1D, Dense, Flatten, concatenate, Embedding
from keras.models import Model
from keras.utils import plot_model


def textcnn(max_sequence_length, max_token_num, embedding_dim, output_dim, model_img_path=None, embedding_matrix=None):
""" TextCNN: 1. embedding layers, 2.convolution layer, 3.max-pooling, 4.softmax layer. """
x_input = Input(shape=(max_sequence_length,))
logging.info("x_input.shape: %s" % str(x_input.shape)) # (?, 60)

if embedding_matrix is None:
x_emb = Embedding(input_dim=max_token_num, output_dim=embedding_dim, input_length=max_sequence_length)(x_input)
else:
x_emb = Embedding(input_dim=max_token_num, output_dim=embedding_dim, input_length=max_sequence_length,
weights=[embedding_matrix], trainable=True)(x_input)
logging.info("x_emb.shape: %s" % str(x_emb.shape)) # (?, 60, 300)

pool_output = []
kernel_sizes = [2, 3, 4]
for kernel_size in kernel_sizes:
c = Conv1D(filters=2, kernel_size=kernel_size, strides=1)(x_emb)
p = MaxPool1D(pool_size=int(c.shape[1]))(c)
pool_output.append(p)
logging.info("kernel_size: %s \t c.shape: %s \t p.shape: %s" % (kernel_size, str(c.shape), str(p.shape)))
pool_output = concatenate([p for p in pool_output])
logging.info("pool_output.shape: %s" % str(pool_output.shape)) # (?, 1, 6)

x_flatten = Flatten()(pool_output) # (?, 6)
y = Dense(output_dim, activation='softmax')(x_flatten) # (?, 2)
logging.info("y.shape: %s \n" % str(y.shape))

model = Model([x_input], outputs=[y])
if model_img_path:
plot_model(model, to_file=model_img_path, show_shapes=True, show_layer_names=False)
model.summary()
return model

https://www.cnblogs.com/bymo/p/9675654.html

https://blog.csdn.net/chuchus/article/details/77847476